Looking at Airplanes

To explore the Science of Flight

Smithsonian
National Air and Space Museum
Exhibits and Public Services Department
Public Services Division
TABLE OF CONTENTS

Looking at Airplanes
 How to Use This Guide .. 3

Quick Reference to How Airplanes Fly 4

Let's Explore the Basic Principles of Flight
 1903 Wright Flyer .. 6

A Wing that Lifts More than 2 Tons
 Spirit of St. Louis ... 8

Streamlining Pays Off
 Lockheed Vega ... 10

Why Does It Look Modern?
 Douglas DC-3 ... 12

Jet Power!
 Bell XP-59A Airacomet .. 14

Speed Faster than Sound
 Bell X-1 ... 16

Dual Controls—for Air and Space
 North American X-1 ... 18
Looking at Airplanes

Welcome to the National Air and Space Museum

HOW TO USE THIS GUIDE

This guide is for visitors to use before or after they have visited the How Things Fly gallery. You will compare wings, engines, streamlining, and controls on seven airplanes in the Museum. Through your observations you will discover how airplanes fly and how the science of flight makes these and other aircraft look the way they do.

The map below will appear throughout the booklet. Each of the seven airplanes will be highlighted as you move from one to the next. The orange timeline along the top right of each page places each of the airplanes in history.

GETTING STARTED

Take one of the escalators from the main first-floor lobby to the second floor balcony, overlooking the Milestones of Flight gallery.

To begin, position yourself in the middle of the balcony so you are facing the Wright Flyer (highlighted below).

All seven aircraft explored in this booklet can be seen from this general area.
Quick Reference to How Airplanes Fly

FORCES OF FLIGHT

Four forces affect things that fly: weight, lift, thrust, and drag. When an airplane flies, the wing is designed to provide enough lift for the airplane’s weight. The engine provides enough thrust to overcome drag and move the airplane forward. The forces are interconnected, so a change in one affects the others. For example, increasing the weight increases the amount of lift needed. A larger wing provides more lift, but that in turn increases how much drag must be overcome, and that increases the thrust required to maintain speed.

HOW WINGS LIFT

Air flowing over the top surface of a curved wing flows faster and has lower pressure than the less obstructed air flowing beneath the wing. The pressure differences between the top and bottom surfaces push the wing up, lifting the airplane. Increasing the curvature of a wing or expanding the surface area increases its lifting ability.

CONTROLLING AN AIRPLANE IN THREE AXES

Elevators are the movable surface on an airplane that control the airplane’s nose in an up and down or pitch axis. **Rudders** are used to control the airplane’s nose in a left to right or yaw axis. **Ailerons** (pronounced ay-Lër-ahns) are used to control the airplane’s movement in a roll axis—moving one wing higher than the other.
SPEED

Increasing the speed of an airplane increases the lift its wing provides. At slow speeds, airplane wings need more surface area and a thicker curved cross section to provide enough lift. At faster speeds, airplane wings need less surface area, so they can be smaller and still provide enough lift.

Increasing an airplane’s speed also increases drag or resistance to oncoming air. The overall performance of faster airplanes is improved with streamlining, which helps reduce drag.

THE SOUND BARRIER

As an airplane moves through the air, it makes pressure waves that radiate from it at the speed of sound, about 1,120 kilometers (700 miles) per hour. When an airplane travels at the speed of sound (Mach 1), it catches up with its own pressure waves, which bunch together into a shock wave. When an airplane travels faster than Mach 1, it flies ahead of its pressure waves, creating an oblique shock wave at its nose.
COMPARE the large surface area of the Flyer’s two wings with other airplanes in the gallery.

Why such big wings? (After all, they don’t have as much weight to lift as the other airplanes.) The Flyer is lighter, but it is also much slower. A slow airplane needs more surface area on its wings to provide enough lift. That’s why the bicyclist-powered Gossamer Condor above you has such long wings.

FIND the engine, drive chains, and propellers that move the Flyer forward.

The 12-horsepower engine is just to the right of the pilot. The engine drives the two propellers in the rear of the airplane with chains and sprockets. The propellers generate thrust, which pushes the airplane forward. The Flyer’s airspeed was around 48 kilometers (30 miles) per hour.

FIND the movable surfaces that control the airplane.

- The elevator, located in front of the airplane, controls the up-and-down movement, called pitch.
- The rudder, located in the rear, controls the side-to-side movement, called yaw.
- The wing tips twist in opposite directions, causing one wing to dip lower than the other and the airplane to rotate, a movement called roll.

The Wright brothers realized the need to control an airplane in three dimensions or “axes,” and they were the first to figure out how to do it.

Let’s Explore the Basic Principles of Flight

You can view this airplane from this location on the second floor.

Stand here to view airplane
The 1903 Wright Flyer made its inaugural flight on December 17, 1903, near Kitty Hawk, North Carolina. The flight was a turning point in human history, the moment when a pilot-controlled, powered airplane took to the sky for the first time.

The 1903 flight was not simply about being the first. With this airplane Orville and Wilbur Wright demonstrated the basic solutions for powered, controlled flight. Today, a Boeing 747 flies by the same principles as the 1903 Flyer: Wings lift the airplane’s weight, engines thrust the airplane forward, and movable surfaces control the airplane in three-dimensional space.

THINK further.

● In how many dimensions or axes can a car be controlled? (one—yaw)
● How about a bicycle? (two—yaw and roll)

TRY this: Show how a pilot turns an airplane.

Stretch out your arms and “fly” in a circle. Did you fly with one “wing” lower than the other and your nose pointed up? That is how an airplane turns. Pilots bank it, yawing toward one side, rolling one wing lower than the other, and then raising the pitch of the nose so the airplane stays level. Moving into a turn, the pilot controls an airplane in three axes at once.

FIND the controls the pilot uses.

The pilot activated the elevator by moving the stick located just to his left. He operated the rudder and twisted the wings simultaneously by using his hips to move the cradle that he was lying in from side to side.
NOTICE the primary fuel tanks—the large gray area of the fuselage in front of the door.

Charles Lindbergh and the Ryan engineers had a dilemma: where to store the 1,710 liters (450 gallons) of fuel needed for the ocean crossing. Even though it meant the loss of his front window, Lindbergh decided it was safest to position the engine and fuel next to each other and for him to sit behind them. To look forward, Lindbergh turned the airplane and looked out the side window or used the periscope. (It is visible near the window on the other side.)

LOOK at the Spirit’s wing tip.

That thickly curved top and flat underside provide lift at the Spirit’s relatively slow speed of 137 to 171 kilometers (86 to 107 miles) per hour. This speed and wing shape were typical of the time period. The wing is often called a “high-lift wing.” With its large fuel load, however, the Spirit needed extra lift, so the wing was made 3 meters (10 feet) longer than other Ryan models of the time.

READ about how the Spirit lost weight.

Even with the extra lifting ability of the Spirit’s wing, Lindbergh still had to justify every ounce of weight. One by one he eliminated pieces of equipment and supplies: his parachute, radio, a 1.35-kilogram
Charles Lindbergh left New York in the Spirit of St. Louis on May 20, 1927. He arrived in Paris 33 hours, 30 minutes later. He was the first person to fly nonstop from New York to Paris.

When Lindbergh first contacted Ryan Airlines in early 1927 to purchase this airplane, he knew customized design features would be necessary for a 6,400-kilometer (4,000-mile) nonstop flight. He worked closely with the engineers at each step. They calculated that 1,710 liters (450 gallons) of fuel were needed, including emergency fuel for 800 extra kilometers (500 miles). Extra fuel tanks were added, and a wing was designed to provide enough lift for the additional 1,215 kilograms (2,700 pounds) of fuel.

(3-pound) carburetor heater, all food except five ham sandwiches and all but a small ration of water. He did change his mind on one item (and it wasn’t the sandwiches!). He nearly had engine failure over the Rocky Mountains during an earlier transcontinental flight when his carburetor iced up. Begrudgingly, he had the carburetor heater reinstalled for the Paris flight. You can see it just behind the engine.

TEST YOURSELF!

FIND the Spirit’s control surfaces and compare them with the Flyer’s.

The elevator is part of the horizontal tail, and the rudder is part of the vertical tail. The “wing twisting” has been replaced by ailerons located on both sides of the wing’s trailing edge.
NOTICE the Vega’s smooth, rounded fuselage.

The exterior skin is molded plywood glued to an internal frame. This construction strengthened the fuselage, because both the skin and the internal frame provided structural support. Compare the Vega’s fuselage with the boxy shape of the Spirit’s. Which looks more streamlined?

LOOK for other streamlining features on the Vega.

The Vega has a “cowling” or cover on the engine and “wheel pants” on the landing gear. These alone added 32 kilometers (20 miles) per hour to the airplane’s maximum speed. The Vega’s wing—braced inside and stronger than the Spirit’s—does not have external supports or “struts.” And the Vega’s rounded fuselage reduces wind resistance (drag) too.

THINK further: Why was streamlining important for the Vega?

An important clue lies in the Vega’s 450-horsepower engine. It was twice as powerful as the Spirit’s, yet its maximum speed is only 96 kilometers (60 miles) per hour more than the Spirit’s. Additional speed means an airplane can lift more weight, but extra speed also increases wind resistance, or drag. Increased drag slows the airplane down and uses up fuel. Think of athletes who wear streamlined clothing to reduce drag.

READ about a man ahead of his time.

Jack Northrop always had his sights set on the future. As he developed designs to solve problems for a wood-framed Vega, he was exploring techniques for building aluminum airplanes. Perhaps most
revolutionary was his design in the late 1920s for a “flying wing.” Northrop presented his ideas to the U.S. Army Air Corps, but the airplane wasn’t developed because it had a seemingly unsolvable problem with pitch control. With the advent of computer-controlled flight, the Air Force again became interested in his plans. Before he died in 1987, Northrop was invited to the unveiling of the B-2 stealth bomber—a “flying wing” based upon his designs. Pictured above is the Northrop NM-1 that was developed in 1940 and is in the Museum’s collection.

Amelia Earhart owned this Vega between 1930 and 1933. She flew it solo across the United States and then across the Atlantic. It is one of 130 that were built, establishing the Vega as one of the first commercial successes in aviation.

During the late 1920s and early ‘30s, Vagas had a reputation for being reliable and efficient. Adventurers used them to set speed and distance records and to explore the globe. Many transportation companies used them because the airplane could carry up to four passengers as well as heavy bulky cargo. Much of the Vega’s success is due to designer Jack Northrop. He devised construction techniques that strengthened the fuselage for carrying more weight and opened up its interior for better use of the space. He also streamlined the Vega, which contributed to its overall performance.
Why Does It Look Modern?

IDENTIFY the features that make this airplane look like modern passenger airplanes.

It has a large fuselage with windows, large wings, and large twin engines. The shape of the fuselage and other surfaces are streamlined. And it is made of aluminum!

THINK further: What’s so great about aluminum?

It is stronger and lighter than wood. An aluminum airplane (unlike the mainly wood and fabric construction of the Flyer and the Spirit) and the wood construction of the Vega) could have a larger fuselage and larger wings and therefore could carry more weight.

NOTICE the rivets on the fuselage and the wings.

The aluminum skin was attached with rivets to an internal aluminum frame. Just like the Vega, the external skin and the internal frame both provide support and add to the airplane’s strength.

TEST YOURSELF!

THINK about why the DC-3 looks the way it does?

- Why are the wings so large? They provide lift for the heavy cargo, passengers and fuel the DC-3 typically carried on long-distance flights.
- Why are all the surfaces rounded? The 1,200-horsepower engines provided a cruising speed from 248 to 304 kilometers (155 to 190 miles) per hour; so drag reduction was important. The DC-3 has a rounded fuselage, a smooth, curved area where the wing is attached to the
fuselage, cowlings surrounding the engines, and retractable landing gear.

Find the control surfaces used on the DC-3. The rudder, elevator, and ailerons are located similarly to the Spirit and the Vega. The ailerons extend across a large portion of the wing. This gives extra control in the roll axis.

IMAGINE taking a flight on the first DC-3.

It is June 1936. This first model is outfitted as a luxury sleeper. There are seven upper and seven lower berths. You board in New York at 6 p.m. with a friend, comfortable clothes, a toothbrush, and your favorite pillow. After dinner, you settle into your berth and close your eyes. Before you know it (unless you were awakened by the three or four refueling stops), it is 10 a.m., and you are landing in Los Angeles. How far can you travel today in 19 hours on a large jetliner?

The DC-3 became a legend in its own time. The airplane’s strength and reliable twin engines made it an industry favorite. By 1938 the DC-3 handled most of the nation’s airline traffic and assured the commercial success of passenger service.

The DC-3, or “Gooney Bird” as it was affectionately nicknamed during World War II, typically carried up to 21 passengers. It was known for providing a smooth, quiet ride over long distances at an impressive speed of 288 kilometers (180 miles) per hour. Thousands of DC-3s were built, and the resulting growth in passenger travel created profits for the airlines for the first time. There are still 400 DC-3s in service today.
Jet Power!

FIND the engines on the XP-59A.

There aren’t any propellers. A jet engine works on a different principle than a piston engine. A piston engine and propellers generate thrust by creating differences in air pressure around the propellers. A jet engine’s burning fuel sends gases out the back of the engine with such force that the airplane is thrust forward. The same principle explains the movement of a balloon if it is filled with air and then let go. Try it when you get home!

SEE how a typical jet engine works.

Air is drawn into the front of the engine, compressed by spinning blades, and forced into a combustion chamber. In the chamber, the air mixes with fuel and ignites in a continuous burn. The gases blast out of the back of the engine with tremendous force. The equal and opposite reaction thrusts the airplane forward.

TEST YOURSELF!

COMPARE the wings of the Spirit, Vega, and DC-3 with those of the XP-59A. Why does the XP-59A have a thinner wing?

A main benefit of the jet engine is increased speed. The XP-59A’s 560 kilometers (350 miles) per hour increased the lifting ability of the wing, so less wing area was...
The increased speed also increased drag. A thinner wing helps reduce drag.

LEARN more.

Try to find the combustion chambers on the piston, jet, and rocket engines in the How Things Fly gallery.

Bell XP-59A Airacomet

The XP-59A is the direct ancestor of American jet-propelled airplanes. It was commissioned in 1941 by the Chief of the Army Air Forces. The airplane never entered combat, but it provided training for Army Air Forces personnel and valuable data for the development of higher-performance jet airplanes, including contemporary jetliners, which can carry 400 passengers at 800 kilometers (500 miles) per hour.

The “X” in its name means it is an experimental airplane. When the Army Air Forces ordered its development, there was hope that jet technology would evolve fast enough to support U.S. efforts in World War II. That did not happen. Even so, the XP-59A reveals basic features of a jet airplane.
NOTICE the sleek fuselage, skinny nose, and short, thin wings.

At the speed of sound, a second kind of drag—caused by shock waves—affects how the airplane must be designed. These are three major features on the Bell X-1 that help diffuse shock-wave drag.

FIND the engine: Do you see openings for drawing in air like a jet engine?

There are no openings for air. The Bell X-1 is powered by a rocket engine. Like a jet engine, a rocket engine burns a mixture of fuel and oxygen. Unlike a jet, a rocket carries its own oxygen, usually in liquid form. The exhaust gases that rush out the back of the rocket exert pressure on the internal surfaces of the rocket engine, which pushes the rocket forward. It is easy to tell the difference between a jet and a rocket engine: a jet engine has an opening for air intake but a rocket engine does not.

SEPARATE the rockets from the jets.

From the middle of the second floor balcony, identify two other rocket-propelled airplanes and two jet airplanes. The rocket-driven airplanes, in addition to the Bell X-1, are the black North American X-15, hanging in the Milestones of Flight gallery, and the white Douglas D-558-2 Skyrocket, to the right of the X-15 and hanging above the escalator. The jet airplanes you can see are the XP-59A, which we’ve already discussed, and the Lockheed F-104A Starfighter, which is hanging to your left by the Planetarium.

READ what the pilot said.

You can find the control surfaces for all three axes on the Bell X-1. But during the time Chuck Yeager was its test pilot, the engineers
The Bell X-1 was modeled after a .50 caliber bullet. Engineers used that shape because bullets were known to maintain stability at supersonic speeds. The success of the X-1 proved that airplanes could be designed for faster-than-sound flight. It also dispelled the notion of an actual physical barrier at the speed of sound. Streamlined design and a rocket engine were critical factors in reaching Mach 1.

On October 14, 1947, Capt. Charles “Chuck” Yeager flew the Bell X-1 at an altitude of 13,106 meters (43,000 ft) at a speed of more than 1,120 kilometers (700 miles) per hour, faster than the speed of sound (Mach 1).

TEST YOURSELF!

THINK about the lift wings like these provide at slow speeds.

Not enough! The Bell X-1 landed at high speeds on a 4.8-kilometer (3-mile) runway. (It could take off under its own power, but was air launched to save fuel.)

were still uncertain about controlling the airplane at high speeds. They weren’t sure what would happen to an airplane that attempted to go through shock waves. Some believed that the whole airplane would vibrate and break apart from the pressure. Others thought there was no “sound barrier.” As Yeager approached the speed of sound, the airplane began to buffet, but once Yeager passed Mach 1, the airplane smoothed out. He remarked later, “Grandma could be sitting up there sipping lemonade.”
FIND the controls used in Earth’s atmosphere.

The movable surfaces on the wings that look like ailerons are actually **flaps**, which provide additional lift as the airplane lands. What look to be elevators on the rear horizontal tail function as both **elevators** and **ailerons**. They can move up and down together to control pitch, or they can move in opposing directions to control the roll. The **rudder** on the vertical tail controls yaw.

THINK further: Why wouldn’t these controls work in near-space?

These controls work by changing the pressure of the air that flows over the control surfaces of the airplane. There is no air above the Earth’s atmosphere, and therefore no air pressure to change.

FIND the controls used in near-space.

Find the two holes on the side of the airplane’s nose, the two on top, and the two on the wing. When you return to the first floor and look up at the X-15, you’ll see another six—two under the nose and two each on the wing. Rocket thrusters control the airplane while it is high in the Earth’s atmosphere. Gases blast from the holes with such force that they push the airplane in the opposite direction. (This is the same principle by which jet and rocket engines work).
MATCH the rocket thrusters with the three axes of control.

Twelve rocket thrusters control the airplane in three axes. Two on each side of the nose control yaw, two each on the top and bottom of the nose control pitch, and one each on the top and bottom of each wing control roll. Just over 50 years after the Wright brothers realized the need for control in three axes, their insight was applied to travel in space!

READ what the pilot said.

When X-15 test pilot Scott Crossfield was asked how he knew when it was time to use one set of controls rather than the other, he replied, “When one didn’t work, I simply used the other.”

TEST YOURSELF!

COMPARE the X-15 with the Bell X-1. Identify three key features on both airplanes that reduce shock-wave drag.

They have skinny noses; sleek, narrow fuselages; and short, thin wings.
FLIGHT by Don Lopez

A richly illustrated and fun-to-read introduction to the history and science of flight. The perfect book for beginning aviation enthusiasts of all ages.

“Bookmarks” with recommended reading lists for families or preschoolers or budding curators are available in the How Things Fly gallery Resource Center. You can also preview recommended books while visiting the Center.

Visit the National Air and Space Museum online at http://www.nasm.si.edu. To go directly to the How Things Fly gallery: http://www.nasm.si.edu/GALLERIES/GAL109

Acknowledgments

Special thanks to Bill Tinkler for his inspiring and patient instruction in aeronautics, the staff and Docents at the National Air and Space Museum for their good ideas, and Museum visitors for their suggestions; also to David Gant and his colleagues in the Museum’s Exhibits Division for their support.

Credits

Author Clare Cuddy

Photographers Carolyn Russo (color photos on pages 6, 8, 10, 14, 18) and Mark Avino (color photos on pages 12, 16)

Additional photo credits B&W photo on page 10, Smithsonian Institution Negative 83-2946 and B&W photo on page 14, History Office, Edwards Air Force Base, CA

Cover photo Cessna 172, courtesy of the Cessna Aircraft Company. You can sit in the pilot’s seat of a similar model, a Cessna 150, in the How Things Fly gallery.

Design Groff Creative, Inc.

Major support for the How Things Fly gallery and the “Looking at Airplanes” visitors guide was generously provided by The Boeing Company and the National Aeronautics and Space Administration.