Repairing Hubble

Posted on Wed, April 23, 2014
favorite

Soon after the Hubble Space Telescope was launched in 1990, images and data from its instruments revealed that its main mirror was optically flawed. It suffered from spherical aberration—not all portions of the mirror focused to the same point. The mirror’s shape was off by less than 1/50th the thickness of a human hair, but this tiny flaw proved devastating to the quality of the Hubble’s images and to the efficiency of all of its instruments.

Deployment of Hubble Space Telescope

Hubble Space Telescope being deployed on April 25, 1990, from the payload bay of Space Shuttle Discovery (STS-31).

This was a serious, but not fatal flaw.  If the Hubble was like all other astronomical instruments lofted into orbit on rockets, it would have had to live out its operational life with that flaw, working at a fraction of peak efficiency.  But Hubble was not like any other space telescope.  It was designed to be serviced by astronauts visiting it on the space shuttle.  That’s one reason why it was placed in a low earth orbit accessible by the shuttle.

\"Repairing Hubble"

View of Repairing Hubble from the mezzanine in National Air and Space Museum’s Space Hall. 

The question now became, how could corrections be made? One option involved bringing it back to Earth and replacing the mirror with a backup (now on view in our Museum, in the Explore the Universe gallery).  But NASA, encouraged by the expertise at the Space Telescope Science Institute in Baltimore, and the Ball Aerospace Corporation in Boulder, Colorado, chose a different approach. One instrument, the Wide-Field/Planetary Camera (WF/PC), already had an upgraded replacement available. Its engineering and science team at NASA’s Jet Propulsion Laboratory knew how to adjust the optics within WFPC2 to compensate for the aberration in the primary mirror. For the other instruments, engineers created an optical box called COSTAR (Corrective Optics Space Telescope Axial Replacement). It contained a set of five pairs of small mirrors on deployable arms that corrected the light beams entering the Hubble’s Faint Object Camera, Faint Object Spectrograph, and Goddard High Resolution Spectrograph.  Fitted within a standard axial instrument enclosure, the small mirrors would deploy after launch and checkout, enter the reflected optical beam from the main mirror, and counteract its flaw, sending the corrected light to the other instruments.

COSTAR

Detail of the deployed mirrors in COSTAR, protected by a plex vitrine. The WPFC2 radiator can be seen in the background.

COSTAR

In the foreground:  the developmental model for COSTAR showing how the mirrors could be deployed on hinged arms. The color coding is for each separate instrument.

COSTAR contained 10 optical elements, 12 motors, and over 5,000 individual parts. After being installed in the Hubble, each of its five optical channels had to be precisely aligned.  In the end, COSTAR’s performance exceeded the original specifications.  Given its complexity, the real challenge was to make it strong enough to withstand launch, and yet delicate enough to insert tiny mirrors into the Hubble’s optical field without disturbing any of the other components.  A Ball Aerospace engineer came up with the solution while taking a shower in a German hotel, which was equipped with ingenious articulated shower heads.

Hubble \"Witness Sample"

A “witness sample” from the moment in the early 1980s when the Hubble mirror was vacuum electrocoated with a reflective layer of aluminum and overcoated with a protective layer of transparent magnesium fluoride. 

After several more servicing missions through the 1990s, all the new instruments onboard Hubble had their own corrections for the flaw in the main mirror. Therefore COSTAR was no longer needed, and, given the rapid advance of solid state detector technologies through the decade, WFPC2 was no longer state of the art.   NASA therefore planned another servicing mission to replace them with new more powerful cameras and detectors.  But the shock of the Space Shuttle Columbia accident in February 2003 was deeply felt worldwide, making NASA cautious about flights that did not go to the International Space Station. Therefore, in 2004 NASA cancelled Hubble’s fourth servicing mission. Without it, the telescope’s life was projected to end by 2007. The decision incited uproar from scientists, the public, and Congress. Twenty-six former astronauts signed a petition in favor of keeping the Hubble alive. The fifth and final Hubble servicing mission took place in May 2009 and was the most complex and demanding yet. During five spacewalks, Atlantis astronauts installed two new instruments, repaired two others, and performed extensive maintenance. They removed COSTAR and WFPC2 and installed the new Wide Field Camera 3 (WFC3), which included greatly upgraded CCDs and some important reusable hardware from the original WF/PC.

WFPC2

The radiator section (rear end) of the Wide Field Planetary Camera II (WFPC2), installed on the Hubble Space Telescope. 

Astronauts brought the two old instruments back to Earth and they were soon shipped to NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Technicians at Goddard and then at the Johnson Space Center examined WFPC2 for effects from prolonged exposure to space. Its radiator, the curved white section that formed part of the Hubble’s outer skin, absorbed more than 15 years’ worth of impacts by micrometeoroids and orbital space debris. Scientists measured the chemical composition of these small impactors to help shed light on the nature of space debris, a danger that affects all space missions. In order to make the analysis, NASA had to core out all the impacts, cutting holes far larger than the debris itself.  That’s why there are so many large holes in the image of the radiator above.